7 research outputs found

    Connectivity Investigation of Channel Quality-Based Adaptive Gossip Flooding Mechanism for AODV

    Get PDF
    To address the “broadcast storm” problem associated with flooding-based route discovery mechanism of reactive routing protocols, probabilistic approaches are suggested in the literature. In the earlier work, Gossip flooding mechanism of Haas et.al. was extended with signal quality, to propose channel quality based adaptive gossip flooding mechanism for AODV (CQAG-AODV). Following the cross-layer design principle, CQAG-AODV algorithm tried to discover robust routes, as well as address the “broadcast storm” problem by controlling the rebroadcast probability of Route request (RREQ) packets on the basis of signal strength experienced at the physical layer. This paper investigates the connectivity of CQAG-AODV through theoretical and simulation analysis. Results show that, by accounting the signal strength in the route discovery process, not only does the proposed algorithm floods  a lesser number of route requests and controls the broadcast storm, but also maintains a higher level of connectivity to offer high packet delivery ratio; independent of network density and node mobility. Moreover, due to controlled routing overhead and robust route discovery, channel quality based adaptive flooding mechanism offers fringe benefit of energy efficiency as well. CQAG-AODV thus proves its suitability in a variety of use cases of multi-hop ad hoc networks including WSNs and VANETs

    EVALUATION OF IMMUNOHISTOCHEMISTRY (IHC) MARKER HER2 IN BREAST CANCER

    No full text
    The paper discusses a novel approach involving algorithm implementation and hardware Devkit processing for estimating the extent of cancer in a breast tissue sample. The process aims at providing a reliable, repeatable, and fast method that could replace the traditional method of manual examination and estimation. Immunohistochemistry (IHC) and Fluorescence in situ Hybridization (FISH) are the two main methods used to detect the marker status in clinical practice. FISH is though more reliable than IHC, but IHC is widely used as it is cheaper, convenient to operate and conserve, the morphology is clear. The IHC markers are Estrogen receptor (ER, Progesterone receptor (PR), Human Epidermal Growth Factor (HER2) that give clear indications of the presence of cancer cells in the tissue sample. HER2 remains the most reliable marker for the detection of breast cancer. The Human Epidermal Growth Factor Receptor (HER2) markers are discussed in the paper, as it gives clear indications of the presence of cancer cells in the tissue sample. HER2 is identified based on the color and intensity of the cell membrane staining. The color and intensity is obviously based on the thresholding for classifying the cancerous cells into severity levels in terms of score to estimate the extent of spread of cancer in breast tissue. For HER2 evaluation, the percentage of staining is calculated in terms of ratio of stain pixel count to the total pixel count. The evaluation of HER2 is obtained through simulation software (MATLAB) using intensity based algorithm and same is run on embedded processor evaluation board Devkit 8500. The results are validated with doctors
    corecore